

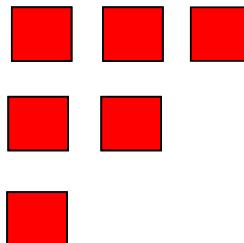
Density of states in the VB and the CB

Density of states in the VB and CB

⇒ number of states of different energies available for carriers

It only depends on the energy

The temperature is responsible for the band filling



Remarks:

- 2 electrons of opposite spin per level at most
- at $T = 0\text{ K}$, no carriers in the CB

Density of states

1D: linear chain of N atoms $\Rightarrow N$ values of k between $-\pi/a$ and $+\pi/a$, separated by $2\pi/Na$

$$k = \frac{2n\pi}{Na}$$

3D: to each k value corresponds a volume in reciprocal space $V_r = (2\pi/Na)^3$, or $V_r = 8\pi^3/V$, with $V=N^3a^3$ the volume of the crystal in real space

Density of states for the electrons in k -space:

- density of states in the reciprocal space $\Rightarrow 1/V_r$
- density of states in the reciprocal space per unit volume
 $\Rightarrow [1/V_r] / \text{crystal volume } (V) = (V/8\pi^3)/V = 1/8\pi^3$

The density of states is constant over each k interval

However, the density of states over each energy interval increases due to the quadratic relation between E and k

Density of states

Density of states as a function of E

$$E = E_0 + \frac{\hbar^2 k^2}{2m^*}$$

*Expression valid nearby an energy band extremum only
(parabolic band approximation)*

$$\Rightarrow k = \sqrt{2m^* (E - E_0) / \hbar^2}$$

How many states are packed in a sphere of radius k ?

$$N_{3D}(E) = V_{\text{sphere}} \times \text{DOS per unit volume} \times 2 \text{ (spins } \pm 1/2\text{)}$$

$$= 4/3 \pi k^3 \times 1/8\pi^3 \times 2$$

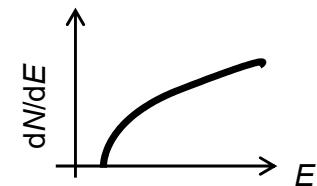
$$= \frac{1}{3\pi^2} \left(\frac{2m^*}{\hbar^2} (E - E_0) \right)^{3/2}$$

Density of states per energy unit

Density of states per energy unit at energy $E \Rightarrow dN(E)/dE$

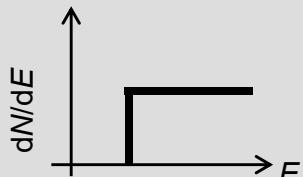
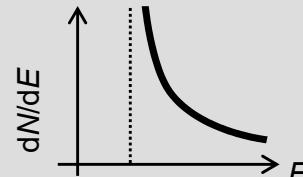
$$N_{3D}(E) = \frac{1}{3\pi^2} \left(\frac{2m^*}{\hbar^2} (E - E_0) \right)^{3/2}$$

$$\rho_{3D}(E) = \frac{dN_{3D}(E)}{dE} = \frac{1}{2\pi^2} \left(\frac{2m^*}{\hbar^2} \right)^{3/2} \sqrt{E - E_0}$$



- **3D density of states (DOS) per energy unit varies as the square root of E**
- **3D DOS per energy unit varies as the effective mass with the exponent 3/2**

Exercise: calculate the DOS per energy unit for the 2D and 1D cases (series)



Band filling

Electrons and holes obey the Fermi-Dirac distribution (fermions)

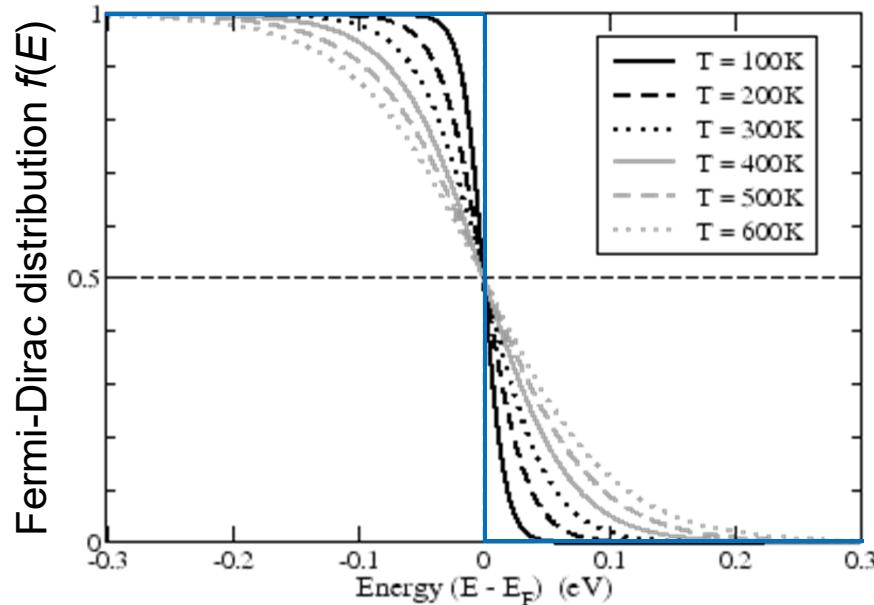
The probability that an energy state E is filled by 1 electron at a temperature T is given by the Fermi-Dirac distribution:

$$f(E) = \frac{1}{1 + e^{(E - E_F)/k_B T}}$$

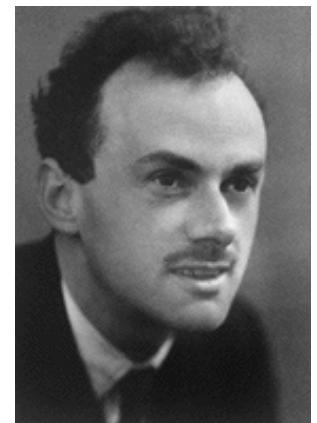
- E_F is the Fermi level \Rightarrow at $T = 0$ K, this is the highest energy level, which is occupied
- E_F is also the chemical potential
- **E_F corresponds to a certain energy for which $f(E_F) = 1/2$ whatever the temperature**

Band filling

Fermi-Dirac distribution



E. Fermi (1901-1954)



P. A. M. Dirac (1902-1984)

Note that $f(E) = 0.5$ when $E = E_F$ whatever $T(K)$

Illustrative example

At 300 K, for $E - E_F = 0.05$ eV $\Rightarrow f(E) = 0.12$
for $E - E_F = 7.5$ eV $\Rightarrow f(E) = 10^{-129}$

Named after Fermi and Dirac who derived this distribution independently in 1926!

Band filling

In the CB, the **density of electrons at an energy E per unit energy** is given by the product of the DOS $\rho_c(E)$ by the occupation probability $f_c(E)$

$$n_c(E) = f_c(E)\rho_c(E)$$

In the VB, the density of holes writes similarly considering the occupation probability $f_v(E)$ of an empty state

$$n_v(E) = f_v(E)\rho_v(E) = [1-f_c(E)]\rho_v(E) \quad \text{i.e., } f_c(E)+f_v(E) = 1$$

The total concentration of electrons (holes) in the CB (VB) is obtained by integrating the carrier density $n_{c(v)}$ over the bands

$$n_c = \int_{E_c}^{+\infty} \rho_c(E)f_c(E)dE$$

$$n_v = \int_{-\infty}^{E_v} \rho_v(E)f_v(E)dE = \int_{-\infty}^{E_v} \rho_v(E)[1-f_c(E)]dE$$

Band filling

The Fermi level usually lies close to mid-gap for undoped and perfect semiconductors

